Mark schemes

1.

(a) MAX 2

Uncertainty in one/each reading is 1 mm $_1 \checkmark$

Allow the uncertainty in (reading) the position of a spot is 1 mm. $_1 \checkmark$

OR

The measurement involves making two readings / there are two uncertainties (to be considered) in this measurement $_1 \checkmark$

Owtte

Difficulty / uncertainty in locating (exact) position of (centre of) spot $_2\checkmark$

Or

Difficulty / uncertainty in lining up the (centre of the) spot with a graduation on the ruler $_2\checkmark$

Or

Difficulty / uncertainty in locating the position of A / B $_2 \checkmark$

Do not allow:

- because the smallest division is 1 mm
- hard to see measurements to less than 1 mm (need to link to position of spot (or A or B)
- "because of both sides of the ruler" on its own
- "ruler slightly misaligned" too vague

the uncertainties from two (readings) are added $_3\checkmark$

insufficient includes:

- uncertainty doubles
- uncertainty is twice the smallest division
- Random error or human error or error without further detail.

However:

The uncertainty doubles because there are two readings scores *MP1*

Also:

The uncertainty doubles because there are two readings <u>with</u> <u>identical uncertainties</u> would score 2 marks.

Mention of range of repeated measurements \div 2 is not applicable in this case.

(b) (Adds the uncertainties =) 4 (mm) $_1 \checkmark$

Or

Use of by substitution

(percentage uncertainty=) $\frac{\text{uncertainty}}{\text{value}}$ (×100) (%) $_1 \checkmark$

(% uncertainty =) 0.74 or 0.7 (c.a.o) $_2\checkmark$ (1 or 2 significant figures only)

1st mark Expect to see: (percentage uncertainty=) $\frac{4}{544}$ (×100) (%) Maximum 1 mark for Condone (in substitution):

- 2/289, 2/255, 2/272, 2/544, 4/289, 4/255, 4/272
- power of ten errors (POT errors)
- must be a recognisable uncertainty

Maximum 1 mark for

use of

```
(percentage uncertainty=) \frac{\text{uncertainty}}{\text{mean (value)}} (value)(×100) (%)
```

along with substitutions of

- 2/289, 2/255, 2/272, 2/544, 4/289, 4/255, 4/272, 4/544
- power of ten errors

condone for 1 mark

((2/289 + 2/255) × 100 =)

1.48% or 1.5%

2nd mark

Condone working leading to 2nd mark for:

Use of (percentage uncertainty=) $\frac{2}{272}$

Do not allow mean of two separate % uncertainties **or** incorrect formula quoted and used in workings

2

(c) MAX 2

The <u>percentage</u> uncertainty in c is smaller <u>than for a or b</u> because c has a larger value (than a or b separately)₁ \checkmark

or % uncertainty in c is half the percentage uncertainty in a + b $_1 \checkmark$

or The <u>percentage</u> uncertainty in c is smaller <u>because</u> its uncertainty is smaller for the same data value $_1 \checkmark$

Insufficient:

- c has a smaller uncertainty
- *a* + *b* has a larger uncertainty
- The uncertainty of a + b is combined

c's (% uncertainty =) 0.37 or 0.4 ₂√ or *c*'s (% uncertainty =) $\frac{2}{544} \times 100 _{2}$ √

idea that $c{}^{*}{\rm s}$ measurement involves fewer readings than the sum of a and b $_{3}{\checkmark}$ or

idea that c requires fewer measurements than the sum of a and b $_3 \checkmark$

Accept converse Where numbers are quoted, these must be consistent with terms used. 4 readings, 2 readings 2 measurements, 1 measurement

(d) (when laser is switched on) always stand behind the laser (unless taking readings) \checkmark

Or

if in front of laser (when switched on) look away from the laser (eg when taking readings) \checkmark

Or

if in front of laser (when switched on) don't look at/towards the laser (eg when taking readings) \checkmark

Or don't look directly into the laser (beam) \checkmark

Or direct laser towards nearest wall ✓

Or switch off laser when not in use \checkmark

Or

ensure (glass) reflective surfaces are covered (prevent reflections) \checkmark

Or

Do not shine the laser onto a reflective surface \checkmark

Or

place safety notices outside the laboratory [room] \checkmark

Or

don't shine laser at eye level ✓

Or

mark positions with pen/pencil and measure after laser switched off \checkmark

Or

laboratory is normally illuminated (not darkened) **√**

Where a list of safety measures has been given:

- Treat more than one correct as neutral
- Penalise incorrect safety measure in a list that may include correct safety measures.

Do not credit weak statements:

- Do not look at the laser
- Don't point the laser anywhere except at the grating
- Don't look directly at the laser

Beware of references to "the light".

(e) $(\tan \theta = \frac{0.544}{1.280} = \theta =) 23.0(^{\circ}) \checkmark$

allow 2 or more significant figure answer acceptable common answers: 23, 23.0, 23.03, 23.025, 23.0255 Where more than 3 sf quoted, the number must be correct. alternative method (valid attempt to determine distance from grating to spot **E**, eg (distance = $(\sqrt{0.544^2 + 1.280^2}) = 1.391$) ($\sin \theta = \frac{0.544}{1.391} = 0.391$) ($\theta = 23.0(^\circ) \checkmark$ allow 2 or more significant figure answer acceptable common answers: 23, 23.0, 23.03, 23.025, 23.0255 Condone mid-calculation rounding leading to errors in 4th sf where quoted.

(f) use of
$$n\lambda = d\sin\theta_1 \checkmark$$

or

(if nothing else seen) d = 3.3×10^{-6} m $_1 \checkmark$

Use of:

Correct rearrangement where subject would be λ or correct substitution of n, d and θ Expect to see n = 2, $d = 3.3(3) \times 10^{-6}$, $\theta = 23(.0)$ Condone **one** error in substitution for n or d in a correctly rearranged equation where subject would be λ (or where answer indicates the correct working for incorrect numbers, d error leads to 5.86 $\times 10^4$) Condone power of ten errors in working

 $\lambda = 6.5(2) \times 10^{-7}$ (m) $_2 \checkmark$ ecf

2 or 3 sf only where 3 sf quoted answer must be in range 651 to 652 nm (or ecf) Common ecf (sin θ error in 1.5): Expect to see an answer that rounds to 7.1 × 10⁻⁷m to 2 sf

2

(g) The second mark $({}_{2}\checkmark)$ is contingent on the award of the first mark $({}_{1}\checkmark)$.

Increase distance from grating to screen / increase y $_1 \checkmark$

(This will increase distance y (and/or c) therefore) decreasing the percentage uncertainty in y / c / fringe spacing / θ / sin $\theta_2 \checkmark$

Do not accept:

- darkened room
- use a (vernier) caliper
- use a travelling microscope
- Repeat
- Repeat and average
- Computer / data logger / camera
- Ruler with smaller divisions
- Make the maxima further apart (details on how this is achieved are required)
- Increase distance between laser and screen.

Decreases the <u>percentage</u> uncertainty in y $_2\checkmark$

Or

Use a higher-order spot $_1\checkmark$

(This will increase distance from centre spot to higher-order spot therefore) decreasing the percentage uncertainty in the fringe spacing/ θ /sin $\theta_2 \checkmark$

Condone reference to this distance as c

Or

Measure distance between A and E $_1 \checkmark$

(This increases the distance therefore) decreasing the <u>percentage</u> uncertainty in c $_2 \checkmark$ No details of determination of c are required.

[12]

[1]

2

В

3. ^(a)

2.

general procedure

- collect water for a measured time;
 - **divide** measured / calculated volume by time to determine rate $_1\checkmark$ *static* volume should be measured *after timing*, eg reject 'measure time to fill cylinder' **or** $_1\checkmark = 0$ accept 'find V for different t, plot V against t, gradient = Q' but not if by continuous flow method

names 2 suitable instruments $_2\checkmark$

for time use <u>stopwatch</u> or <u>stop</u>clock; treat as neutral: 'timer' or 'light gate / data logger' for volume use <u>measuring cylinder</u> / graduated beaker; treat as neutral: 'measuring beaker' / 'burette' OR

for mass use <u>balance</u>; use of $V = \frac{m}{\rho}$ (any subject) condone 'volume of 1 g is 1 cm ³; reject 'weigh'/weighed'

1

method to reduce uncertainty in volume $_{3}\checkmark$ read water level at bottom of the meniscus (or wtte or allow sketch); don't penalise further use of 'beaker' treat as neutral: 'dry cylinder before use' OR procedure to avoid systematic error in determining mass, eg tare / reset / zero the balance with empty beaker on pan / find mass of beaker empty and subtract from mass of beaker plus water; don't penalise further use of 'weigh'/ 'scales' allow 'use balance on a horizontal surface' method to reduce uncertainty in time $_4\checkmark$ ✓ ensure stopwatch is zeroed / reset before use added detail $5\sqrt{6}\sqrt{7}$ collect large(r) volume / for long(er) time / \geq 60 s $_5 \checkmark$ this reduces percentage / fractional uncertainty $_{6}$ read at <u>eve level</u> or wtte, to reduce <u>parallax</u> $\sqrt{}$ MAX 2 (b) sensible mark identifying second box indicating (N m⁻² s) only auto marked question 1 (c) 19.8% (from 4 × 2.9% + 1.8% + 6.4%) earns both marks √√ don't insist on seeing '%' unless 0.198 etc allow final answer rounded to 20% allow 1 mark for 0.198 or 0.20 but reject 1 sf 0.2 for incorrect answer the following can earn one mark: (percentage uncertainty in d =) 4 × 2.9% / 11.6% / 12% seen in working but wrong final answer OR missing $\times 4 \text{ eg } 2.9\% + 1.8\% + 6.4\% = 11(.1)\%$ OR incorrect multiplier applied to 2.9 eg 2 × 2.9% OR with x 4 applied wrongly eg 2.9 + (1.8 × 4) + 6.4 = 16.5 % or 17 % / $2.9 + 1.8 + (6.4 \times 4) = 30(.3)$ % 2

(d) appropriate use (ie close to and parallel with the vertical side of the tube, but not necessarily in contact with the tube) of:

a metre ruler made vertical using a set-square in <u>contact with the bench</u> / <u>floor</u> / (flat) <u>surface</u>

OR

a plumb line / weight on vertical string (reject 'pendulum')

OR

a spirit level 🗸

the mark can be awarded for a convincing sketch, eg use of a very large set square without ruler

accept 'tri-square' for set square

the only acceptable horizontal reference is the bench: don't allow use of horizontal T, eg set square placed on T even if sketch looks convincing

no credit for attempt to show graduations on tube are horizontal / use of 'protractor' for set-square / 'each side of meniscus at same level' / use of clamp stand rod or wall as vertical reference

1

(e) attempted use of $y = y_0 e^{-\lambda \Delta t}$ with substitution of values of y, y_0 and Δt obtained **directly** from **Figure 4** / plausible values obtained from **Figure 7**

OR

tangent drawn on **Figure 4** to find $\frac{dy}{dt}$;

use of $\frac{dy}{dt} = (-)\lambda \times y^*$ and y^* is where tangent meets the curve $\sqrt{1}$

valid calculation **seen** leading to a result for λ that rounds to 3 sf in range 4.45 to 4.55 $\times 10^{-3}$ (s⁻¹);

award if seen in body of answer $_2\checkmark$

for ${}_{1}\checkmark$ do not penalise y / y_{0} interchanged, read off errors, manipulation errors $/ \Delta t = t / t0 / \frac{t}{t_{0}}$ or use of incorrect symbols eg A, N for y; no ecf for ${}_{2}\checkmark$ allow use of **Figure 7** $y_{0} = 60.0 \text{ cm}, y = 52.2 \text{ cm}; \Delta t = 60 - 29 = 31 \text{ s}$ $52.2 = 60 \text{ e}^{-31\lambda}; \therefore \lambda = 4.49 \times 10^{-3} \text{ s}^{-1}$ if the intermediate step is seen, eg

$$\lambda = \frac{1}{\Delta t} \times \ln\left(\frac{y_0}{y}\right) = \frac{1}{31} \times \ln\left(\frac{60}{52.2}\right)$$

no credit allowed for reverse-working method in a 'Show that' problem

no credit for assuming straight line and y = mx + c, measuring the gradient then by determining the

equation of the line or by using $m = \frac{y_2 - y_1}{t_2 - t_1}$ determines the half life; finds λ from $\frac{\ln 2}{\text{half life}}$ no credit for common error λ = gradient × 2

for $_2\checkmark$ look for any answer in the body that deserves credit (for a 'Show that' we can overlook truncation in the value given on the answer line)

variation on use of use of $y = y_0 e^{-\lambda \Delta t}$ for $\sqrt{-1}$:

λ can be found if points t₁, y₁ and t₂, y₂ are used and the values substituted into $\frac{y_1}{e^{-\lambda t_1}} = \frac{y_2}{e^{-\lambda t_2}};$

if this approach is used substitute the data into $\lambda = \frac{1}{\Delta t} \times \ln\left(\frac{y_0}{y}\right)$ to confirm that the

result for λ is correct before awarding $_2\checkmark$

(f) use of
$$T_{\chi} = \frac{\ln 2}{\lambda} \text{ OR } \frac{\ln 0.5}{-\lambda}$$
 with substitution of **recognisable** λ ;

evaluated to ≥ 2 sf in range 140 s to 170 s \checkmark calculation can have any subject; accept use of 2 sf $\lambda = 4.5 \times 10^{-3}$ usually leading to 154 but allow correctly truncated to 150 or 1.5 $\times 10^{2}$

(g) (mostly) continuous line drawn on **Figure 7**;

below dashed line and with negative gradient between t = 0 and t = 120;

do not penalise linear line or shaky / thick / hairy line or slight

discontinuities; accept \approx horizontal after 100 s $_1 \checkmark$

line passes through:

t/s	y/cm		
115	min	max	
0	33	35	

AND through EITHER of

2 [13]

4.

В

(a)

to reduce the impact of systematic error: tare [zero] the callipers before use **OR**

take reading with callipers fully closed (at some stage) and subtract from readings $\sqrt{1}$

to reduce the impact of random error: take measurement several times for different diameters/directions and calculate mean

OR

take measurement several times for different diameters to check for anomalies ${}_2 \checkmark$

(b) use of inside jaws on callipers required: must have a clear drawing with inside jaws in contact internal diameter $\sqrt{}$

A **sectional** view of the magnet must be given Jaws must be inside cavity (as here)

(c) Determines a cross-sectional area: (larger A=) 2.82

 $\times 10^{-3}$ or (smaller area =) 2.932 $\times 10^{-4}$

OR

states that the cross sectional area from $\boldsymbol{\Delta}$

$$A = \left(\frac{\pi D^2}{4} - \frac{\pi d^2}{4}\right)$$

OR

Calculates one volume correctly $_1\checkmark$

Allow POT error $_{1}\checkmark$ and $_{2}\checkmark$

Where r is used must have an additional statement on how r relates to D (in the case where there is no correct substitution and no correct answer)

substitution of D = 59.90, d = 19.32 and t = 12.09 into

$$V = \left(\frac{\pi D^2}{4} - \frac{\pi d^2}{4}\right) \times t$$

2

OR

 $V = \text{their } \Delta A \times 12.09$

OR

Correctly finds difference in *their* volumes ₂

Or equivalent

Correct substitution into

$$V = \left(\frac{\pi D^2}{4} - \frac{\pi d^2}{4}\right) \times t$$

receives the first two marks (allow POT)

Expect values:

$$V_D = 3.41 \times 10^{-5} \ (m^3)$$

$$V_d = 3.54 \times 10^{-6} \ (m^3)$$

 $3.1 \times 10^{-5} / 3.05 \times 10^{-5} / 3.053 \times 10^{-5} (m^3) _{3}$

no limit on maximum sf Correct answer scores 3 Allow 3rd sf round error where answer rounds to 3.1×10^{-5}

when correct method seen

(d) Procedure:

MAX 2

Take more measurement(s) of *h* for additional / different masses (of clay) ✓ More than one added mass, allow varies amount of clay

Convert (total) mass into weight (and equal to the repulsive force of magnet A on magnet B) \checkmark

Describe method to measure *h* using ruler or set square ✓ (*in this case determination of k must be consistent with graph*)

Analysis:

```
Plot a graph of F against 1/h^3 \checkmark
```

Condone 1/h³ against F or equivalent

Should be a straight line of best fit \checkmark

This mark can be awarded if seen by drawing of straight line with positive gradient on sketch of graph

Determination of k:

MAX 1

Measure gradient and set equal to $k \checkmark$

Allow one mark for plot of F against h^3 and statement that area under graph is k. Mark **Procedure** as scheme

Substitute (total) weight into formula and rearrange to find $k \checkmark$ Must be consistent with graph

(a) path difference for two waves \checkmark

Allow 'waves travel different distances' Condone out of phase

gives rise to a phase difference ✓ *if phase and path confused only give 1 for first 2 marks*

Destructive interference occurs ✓ allow explanation of interference 5 [11]

7.

(b)	(Path difference =) 0.056 m ✓		
	Path difference = 2λ or wavelength = 0.028 m \checkmark e		
	Use of $f = c/\lambda$ so $f = 11(10.7) \times 10^9$ Hz \checkmark Allow 2 max for 5.4 × 10 ⁹ Hz or 2.7 × 10 ⁹ Hz Allow ecf	3	
(c)	Intensity decreases with distance \checkmark		
	One wave travels further than the other \checkmark		
	Amplitudes/intensities of the waves at the minimum points are not equal \checkmark		
	Or "do not cancel out"	max 2	
(d)	The signal decreases/becomes zero \checkmark		
	The waves transmitted are polarised \checkmark		
	zero when detector at 90° to the transmitting aerial/direction of polarisation of wave \checkmark	max 3	
		max 5	[11]
(a)	Both <i>t</i> _m values correct: 0.404, 0.429 AND		
	Both t_m^2 values correct: 0.163, 0.184 \checkmark		
	Exact values required for the mark.	1	
(b)	Both plotted points to nearest mm \checkmark Best line of fit to points \checkmark		
	The line should be a straight line with approximately an equal number of points on either side of the line.	2	
(c)	Large triangle drawn (at least 8 cm × 8 cm) ✓ Correct values read from graph ✓	2	
	Gradient value in range 0.190 to 0.222 ✓ Allow 2 or 3 sf for gradient	3	
(d)	$g = 9.71 \text{ (ms}^{-2})$ or correct value from gradient value in (c) \checkmark .	5	
(u)			
	(The answer must be in the range 9.0 to 10.5 (ms ⁻²)). Allow 2 or 3 sf.		
	Unit not required		
		1	

1

1

3

(e) % difference=
$$\frac{(9.81-9.71)}{9.81} \times 100 = 1.02$$

OR correct computation using value from (d) \checkmark

If the candidate's value is exactly 9.81, then a statement that there is no (or zero) percentage difference is acceptable. No sf penalty. NB. Allow an answer from a calculation with either the candidate's value or the accepted value as the denominator in the equation.

- (g) $g = 2s/t_m^2 \checkmark$ = 2 × 0.300/0.245² \checkmark = 10.0 (or 10.00) ms⁻² \checkmark Unit required and 3 or 4sf for the last mark.
- (h) % uncertainty in s = 0.33 and % uncertainty in $t_{m} = 0.41 \checkmark$ Allow ecf from part (f).

% uncertainty in g = $0.33 + (2 \times 0.41) = 1.15 \checkmark$ Allow ecf at each stage of calculation.

Uncertainty in g = $10.0 \times 1.15/100 = 0.12 \text{ m s}^{-2} \text{ or } 0.1 \text{ m s}^{-2} \checkmark$

Allow ecf from part (g).

(allow 1 or 2 sf only) (Must have unit for 3rd mark).

⁽f) 0.001 s√ (half the spread) (Must have unit).

 (i) (a) Use spherical objects of different mass and determine mass with balance ✓ Annotate the script with the appropriate letter at the point where the mark has been achieved.

(b) Would need **same diameter** spherical objects for fair comparison (same air resistance etc) \checkmark

(c) Time spherical object falling through same height and compare times

Alternative for **(c)**: i.e. repeat whole of experiment, plot extracted values of g against mass. Horizontal line expected, concluding acceleration same for different masses.

[18]